\(\int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx\) [266]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 143 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {\left (2 A (2 c-d) d+B \left (2 c^2-4 c d+3 d^2\right )\right ) x}{2 a}+\frac {2 (A (c-d)-B (2 c-d)) d \cos (e+f x)}{a f}+\frac {(2 A-3 B) d^2 \cos (e+f x) \sin (e+f x)}{2 a f}-\frac {(A-B) \cos (e+f x) (c+d \sin (e+f x))^2}{f (a+a \sin (e+f x))} \]

[Out]

1/2*(2*A*(2*c-d)*d+B*(2*c^2-4*c*d+3*d^2))*x/a+2*(A*(c-d)-B*(2*c-d))*d*cos(f*x+e)/a/f+1/2*(2*A-3*B)*d^2*cos(f*x
+e)*sin(f*x+e)/a/f-(A-B)*cos(f*x+e)*(c+d*sin(f*x+e))^2/f/(a+a*sin(f*x+e))

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.99, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {3056, 2813} \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {x \left (-\left (d^2 (2 A-3 B)\right )+4 A c d+2 B c (c-2 d)\right )}{2 a}+\frac {2 d (A (c-d)-B (2 c-d)) \cos (e+f x)}{a f}-\frac {(A-B) \cos (e+f x) (c+d \sin (e+f x))^2}{f (a \sin (e+f x)+a)}+\frac {d^2 (2 A-3 B) \sin (e+f x) \cos (e+f x)}{2 a f} \]

[In]

Int[((A + B*Sin[e + f*x])*(c + d*Sin[e + f*x])^2)/(a + a*Sin[e + f*x]),x]

[Out]

((2*B*c*(c - 2*d) + 4*A*c*d - (2*A - 3*B)*d^2)*x)/(2*a) + (2*(A*(c - d) - B*(2*c - d))*d*Cos[e + f*x])/(a*f) +
 ((2*A - 3*B)*d^2*Cos[e + f*x]*Sin[e + f*x])/(2*a*f) - ((A - B)*Cos[e + f*x]*(c + d*Sin[e + f*x])^2)/(f*(a + a
*Sin[e + f*x]))

Rule 2813

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*a*c +
 b*d)*(x/2), x] + (-Simp[(b*c + a*d)*(Cos[e + f*x]/f), x] - Simp[b*d*Cos[e + f*x]*(Sin[e + f*x]/(2*f)), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \cos (e+f x) (c+d \sin (e+f x))^2}{f (a+a \sin (e+f x))}+\frac {\int (c+d \sin (e+f x)) (a (B (c-2 d)+2 A d)-a (2 A-3 B) d \sin (e+f x)) \, dx}{a^2} \\ & = \frac {\left (2 B c (c-2 d)+4 A c d-(2 A-3 B) d^2\right ) x}{2 a}+\frac {2 (A (c-d)-B (2 c-d)) d \cos (e+f x)}{a f}+\frac {(2 A-3 B) d^2 \cos (e+f x) \sin (e+f x)}{2 a f}-\frac {(A-B) \cos (e+f x) (c+d \sin (e+f x))^2}{f (a+a \sin (e+f x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.46 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.40 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (8 (A-B) (c-d)^2 \sin \left (\frac {1}{2} (e+f x)\right )+2 \left (2 A (2 c-d) d+B \left (2 c^2-4 c d+3 d^2\right )\right ) (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+4 d (-A d+B (-2 c+d)) \cos (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )-B d^2 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (2 (e+f x))\right )}{4 a f (1+\sin (e+f x))} \]

[In]

Integrate[((A + B*Sin[e + f*x])*(c + d*Sin[e + f*x])^2)/(a + a*Sin[e + f*x]),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(8*(A - B)*(c - d)^2*Sin[(e + f*x)/2] + 2*(2*A*(2*c - d)*d + B*(2*c^2 -
 4*c*d + 3*d^2))*(e + f*x)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]) + 4*d*(-(A*d) + B*(-2*c + d))*Cos[e + f*x]*(C
os[(e + f*x)/2] + Sin[(e + f*x)/2]) - B*d^2*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sin[2*(e + f*x)]))/(4*a*f*(1
 + Sin[e + f*x]))

Maple [A] (verified)

Time = 0.63 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.35

method result size
derivativedivides \(\frac {-\frac {2 \left (A \,c^{2}-2 A c d +A \,d^{2}-B \,c^{2}+2 c d B -d^{2} B \right )}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}+\frac {2 \left (\frac {B \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) d^{2}}{2}+\left (-A \,d^{2}-2 c d B +d^{2} B \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {B \tan \left (\frac {f x}{2}+\frac {e}{2}\right ) d^{2}}{2}-A \,d^{2}-2 c d B +d^{2} B \right )}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2}}+\left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}\) \(193\)
default \(\frac {-\frac {2 \left (A \,c^{2}-2 A c d +A \,d^{2}-B \,c^{2}+2 c d B -d^{2} B \right )}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}+\frac {2 \left (\frac {B \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) d^{2}}{2}+\left (-A \,d^{2}-2 c d B +d^{2} B \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {B \tan \left (\frac {f x}{2}+\frac {e}{2}\right ) d^{2}}{2}-A \,d^{2}-2 c d B +d^{2} B \right )}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2}}+\left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}\) \(193\)
parallelrisch \(\frac {\left (\left (-2 f x A +3 f x B -7 A +7 B \right ) d^{2}+4 c \left (\left (-f x -\frac {7}{2}\right ) B +A \left (f x +2\right )\right ) d -4 \left (\left (-\frac {f x}{2}-1\right ) B +A \right ) c^{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+\left (\left (-2 f x A +3 f x B -A +B \right ) d^{2}+4 c \left (\left (-f x -\frac {1}{2}\right ) B +f x A \right ) d +2 B \,c^{2} f x \right ) \sin \left (\frac {f x}{2}+\frac {e}{2}\right )-\left (\left (\left (A -\frac {3 B}{4}\right ) d +2 B c \right ) \cos \left (\frac {3 f x}{2}+\frac {3 e}{2}\right )+\left (\left (A -\frac {3 B}{4}\right ) d +2 B c \right ) \sin \left (\frac {3 f x}{2}+\frac {3 e}{2}\right )-\frac {d B \left (\cos \left (\frac {5 f x}{2}+\frac {5 e}{2}\right )-\sin \left (\frac {5 f x}{2}+\frac {5 e}{2}\right )\right )}{4}\right ) d}{2 \left (\sin \left (\frac {f x}{2}+\frac {e}{2}\right )+\cos \left (\frac {f x}{2}+\frac {e}{2}\right )\right ) a f}\) \(226\)
risch \(\frac {2 x A c d}{a}-\frac {x A \,d^{2}}{a}+\frac {x B \,c^{2}}{a}-\frac {2 x c d B}{a}+\frac {3 x \,d^{2} B}{2 a}-\frac {d^{2} {\mathrm e}^{i \left (f x +e \right )} A}{2 a f}-\frac {d \,{\mathrm e}^{i \left (f x +e \right )} B c}{a f}+\frac {d^{2} {\mathrm e}^{i \left (f x +e \right )} B}{2 a f}-\frac {d^{2} {\mathrm e}^{-i \left (f x +e \right )} A}{2 a f}-\frac {d \,{\mathrm e}^{-i \left (f x +e \right )} B c}{a f}+\frac {d^{2} {\mathrm e}^{-i \left (f x +e \right )} B}{2 a f}-\frac {2 A \,c^{2}}{f a \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}+\frac {4 A c d}{f a \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}-\frac {2 A \,d^{2}}{f a \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}+\frac {2 B \,c^{2}}{f a \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}-\frac {4 c d B}{f a \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}+\frac {2 d^{2} B}{f a \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}-\frac {d^{2} B \sin \left (2 f x +2 e \right )}{4 a f}\) \(348\)
norman \(\frac {\frac {\left (2 A \,c^{2}-4 A c d -2 B \,c^{2}-2 d^{2} B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{a f}+\frac {\left (2 A \,c^{2}-4 A c d +2 A \,d^{2}-2 B \,c^{2}+4 c d B -3 d^{2} B \right ) \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}+\frac {\left (6 A \,c^{2}-12 A c d +2 A \,d^{2}-6 B \,c^{2}+4 c d B -5 d^{2} B \right ) \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}+\frac {\left (6 A \,c^{2}-12 A c d +4 A \,d^{2}-6 B \,c^{2}+8 c d B -6 d^{2} B \right ) \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {2 A \,d^{2}+4 c d B -d^{2} B}{a f}+\frac {\left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) x}{2 a}-\frac {\left (4 A \,d^{2}+8 c d B \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {\left (2 A \,d^{2}+4 c d B +d^{2} B \right ) \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}+\frac {\left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2 a}+\frac {3 \left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) x \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {3 \left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) x \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {3 \left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) x \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {3 \left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) x \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {\left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) x \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {\left (4 A c d -2 A \,d^{2}+2 B \,c^{2}-4 c d B +3 d^{2} B \right ) x \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) \left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{3}}\) \(678\)

[In]

int((A+B*sin(f*x+e))*(c+d*sin(f*x+e))^2/(a+a*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

2/f/a*(-(A*c^2-2*A*c*d+A*d^2-B*c^2+2*B*c*d-B*d^2)/(tan(1/2*f*x+1/2*e)+1)+(1/2*B*tan(1/2*f*x+1/2*e)^3*d^2+(-A*d
^2-2*B*c*d+B*d^2)*tan(1/2*f*x+1/2*e)^2-1/2*B*tan(1/2*f*x+1/2*e)*d^2-A*d^2-2*c*d*B+d^2*B)/(1+tan(1/2*f*x+1/2*e)
^2)^2+1/2*(4*A*c*d-2*A*d^2+2*B*c^2-4*B*c*d+3*B*d^2)*arctan(tan(1/2*f*x+1/2*e)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 303 vs. \(2 (139) = 278\).

Time = 0.26 (sec) , antiderivative size = 303, normalized size of antiderivative = 2.12 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {B d^{2} \cos \left (f x + e\right )^{3} - 2 \, {\left (A - B\right )} c^{2} + 4 \, {\left (A - B\right )} c d - 2 \, {\left (A - B\right )} d^{2} + {\left (2 \, B c^{2} + 4 \, {\left (A - B\right )} c d - {\left (2 \, A - 3 \, B\right )} d^{2}\right )} f x - 2 \, {\left (2 \, B c d + {\left (A - B\right )} d^{2}\right )} \cos \left (f x + e\right )^{2} - {\left (2 \, {\left (A - B\right )} c^{2} - 4 \, {\left (A - 2 \, B\right )} c d + {\left (4 \, A - 3 \, B\right )} d^{2} - {\left (2 \, B c^{2} + 4 \, {\left (A - B\right )} c d - {\left (2 \, A - 3 \, B\right )} d^{2}\right )} f x\right )} \cos \left (f x + e\right ) - {\left (B d^{2} \cos \left (f x + e\right )^{2} - 2 \, {\left (A - B\right )} c^{2} + 4 \, {\left (A - B\right )} c d - 2 \, {\left (A - B\right )} d^{2} - {\left (2 \, B c^{2} + 4 \, {\left (A - B\right )} c d - {\left (2 \, A - 3 \, B\right )} d^{2}\right )} f x + {\left (4 \, B c d + {\left (2 \, A - B\right )} d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{2 \, {\left (a f \cos \left (f x + e\right ) + a f \sin \left (f x + e\right ) + a f\right )}} \]

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))^2/(a+a*sin(f*x+e)),x, algorithm="fricas")

[Out]

1/2*(B*d^2*cos(f*x + e)^3 - 2*(A - B)*c^2 + 4*(A - B)*c*d - 2*(A - B)*d^2 + (2*B*c^2 + 4*(A - B)*c*d - (2*A -
3*B)*d^2)*f*x - 2*(2*B*c*d + (A - B)*d^2)*cos(f*x + e)^2 - (2*(A - B)*c^2 - 4*(A - 2*B)*c*d + (4*A - 3*B)*d^2
- (2*B*c^2 + 4*(A - B)*c*d - (2*A - 3*B)*d^2)*f*x)*cos(f*x + e) - (B*d^2*cos(f*x + e)^2 - 2*(A - B)*c^2 + 4*(A
 - B)*c*d - 2*(A - B)*d^2 - (2*B*c^2 + 4*(A - B)*c*d - (2*A - 3*B)*d^2)*f*x + (4*B*c*d + (2*A - B)*d^2)*cos(f*
x + e))*sin(f*x + e))/(a*f*cos(f*x + e) + a*f*sin(f*x + e) + a*f)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5763 vs. \(2 (117) = 234\).

Time = 2.04 (sec) , antiderivative size = 5763, normalized size of antiderivative = 40.30 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))**2/(a+a*sin(f*x+e)),x)

[Out]

Piecewise((-4*A*c**2*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/
2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 8*A*c**2*tan(e/2 + f*x/2)**2/(2*
a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 +
2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 4*A*c**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(
e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 4*A*c*d*f*x*tan(e/2 + f*x/2)**
5/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)*
*2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 4*A*c*d*f*x*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(
e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 8*
A*c*d*f*x*tan(e/2 + f*x/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)*
*3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 8*A*c*d*f*x*tan(e/2 + f*x/2)**2/(2*a*f*tan(
e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*ta
n(e/2 + f*x/2) + 2*a*f) + 4*A*c*d*f*x*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4
+ 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 4*A*c*d*f*x/(2*a*f
*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a
*f*tan(e/2 + f*x/2) + 2*a*f) + 8*A*c*d*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)
**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 16*A*c*d*tan(e
/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(
e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 8*A*c*d/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2
)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 2*A*d**2*f*x*
tan(e/2 + f*x/2)**5/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f
*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 2*A*d**2*f*x*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x
/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f
*x/2) + 2*a*f) - 4*A*d**2*f*x*tan(e/2 + f*x/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a
*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 4*A*d**2*f*x*tan(e/2 +
f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 +
 f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 2*A*d**2*f*x*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*
f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f
) - 2*A*d**2*f*x/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*ta
n(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 4*A*d**2*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5
+ 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) +
 2*a*f) - 4*A*d**2*tan(e/2 + f*x/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2
+ f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 12*A*d**2*tan(e/2 + f*x/2)**2/(2*a
*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2
*a*f*tan(e/2 + f*x/2) + 2*a*f) - 4*A*d**2*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)
**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 8*A*d**2/(2*a*
f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*
a*f*tan(e/2 + f*x/2) + 2*a*f) + 2*B*c**2*f*x*tan(e/2 + f*x/2)**5/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 +
f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 2*B*c**2
*f*x*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 +
4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 4*B*c**2*f*x*tan(e/2 + f*x/2)**3/(2*a*f*tan(e/2
+ f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/
2 + f*x/2) + 2*a*f) + 4*B*c**2*f*x*tan(e/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4
+ 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 2*B*c**2*f*x*tan(e
/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2
 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 2*B*c**2*f*x/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x
/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 4*B*c**2*ta
n(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*t
an(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 8*B*c**2*tan(e/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5
 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2)
+ 2*a*f) + 4*B*c**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f
*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 4*B*c*d*f*x*tan(e/2 + f*x/2)**5/(2*a*f*tan(e/2 + f*x/
2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*
x/2) + 2*a*f) - 4*B*c*d*f*x*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f
*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 8*B*c*d*f*x*tan(e/2 + f*x
/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*
x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 8*B*c*d*f*x*tan(e/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f
*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f)
 - 4*B*c*d*f*x*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2
)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 4*B*c*d*f*x/(2*a*f*tan(e/2 + f*x/2)**5 +
2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2
*a*f) - 8*B*c*d*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f
*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 8*B*c*d*tan(e/2 + f*x/2)**3/(2*a*f*ta
n(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*
tan(e/2 + f*x/2) + 2*a*f) - 24*B*c*d*tan(e/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**
4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 8*B*c*d*tan(e/2
+ f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 +
f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 16*B*c*d/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4
+ 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 3*B*d**2*f*x*tan(e
/2 + f*x/2)**5/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(
e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 3*B*d**2*f*x*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**
5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2)
 + 2*a*f) + 6*B*d**2*f*x*tan(e/2 + f*x/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*ta
n(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 6*B*d**2*f*x*tan(e/2 + f*x/2
)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/
2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 3*B*d**2*f*x*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan
(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 3
*B*d**2*f*x/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2
 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 6*B*d**2*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a
*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*
f) + 6*B*d**2*tan(e/2 + f*x/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x
/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 10*B*d**2*tan(e/2 + f*x/2)**2/(2*a*f*ta
n(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*
tan(e/2 + f*x/2) + 2*a*f) + 2*B*d**2*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 +
 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 8*B*d**2/(2*a*f*tan
(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*t
an(e/2 + f*x/2) + 2*a*f), Ne(f, 0)), (x*(A + B*sin(e))*(c + d*sin(e))**2/(a*sin(e) + a), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 606 vs. \(2 (139) = 278\).

Time = 0.29 (sec) , antiderivative size = 606, normalized size of antiderivative = 4.24 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {B d^{2} {\left (\frac {\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {5 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + 4}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {2 \, a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {2 \, a \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {a \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}} + \frac {3 \, \arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a}\right )} - 4 \, B c d {\left (\frac {\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 2}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {\arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a}\right )} - 2 \, A d^{2} {\left (\frac {\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 2}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {\arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a}\right )} + 2 \, B c^{2} {\left (\frac {\arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a} + \frac {1}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}}\right )} + 4 \, A c d {\left (\frac {\arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a} + \frac {1}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}}\right )} - \frac {2 \, A c^{2}}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}}}{f} \]

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))^2/(a+a*sin(f*x+e)),x, algorithm="maxima")

[Out]

(B*d^2*((sin(f*x + e)/(cos(f*x + e) + 1) + 5*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 3*sin(f*x + e)^3/(cos(f*x +
 e) + 1)^3 + 3*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 4)/(a + a*sin(f*x + e)/(cos(f*x + e) + 1) + 2*a*sin(f*x +
 e)^2/(cos(f*x + e) + 1)^2 + 2*a*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + a*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 +
 a*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) + 3*arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a) - 4*B*c*d*((sin(f*x + e
)/(cos(f*x + e) + 1) + sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 2)/(a + a*sin(f*x + e)/(cos(f*x + e) + 1) + a*sin
(f*x + e)^2/(cos(f*x + e) + 1)^2 + a*sin(f*x + e)^3/(cos(f*x + e) + 1)^3) + arctan(sin(f*x + e)/(cos(f*x + e)
+ 1))/a) - 2*A*d^2*((sin(f*x + e)/(cos(f*x + e) + 1) + sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 2)/(a + a*sin(f*x
 + e)/(cos(f*x + e) + 1) + a*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a*sin(f*x + e)^3/(cos(f*x + e) + 1)^3) + ar
ctan(sin(f*x + e)/(cos(f*x + e) + 1))/a) + 2*B*c^2*(arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a + 1/(a + a*sin(f
*x + e)/(cos(f*x + e) + 1))) + 4*A*c*d*(arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a + 1/(a + a*sin(f*x + e)/(cos
(f*x + e) + 1))) - 2*A*c^2/(a + a*sin(f*x + e)/(cos(f*x + e) + 1)))/f

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.50 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {\frac {{\left (2 \, B c^{2} + 4 \, A c d - 4 \, B c d - 2 \, A d^{2} + 3 \, B d^{2}\right )} {\left (f x + e\right )}}{a} - \frac {4 \, {\left (A c^{2} - B c^{2} - 2 \, A c d + 2 \, B c d + A d^{2} - B d^{2}\right )}}{a {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}} + \frac {2 \, {\left (B d^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 4 \, B c d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, A d^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, B d^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - B d^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 4 \, B c d - 2 \, A d^{2} + 2 \, B d^{2}\right )}}{{\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}^{2} a}}{2 \, f} \]

[In]

integrate((A+B*sin(f*x+e))*(c+d*sin(f*x+e))^2/(a+a*sin(f*x+e)),x, algorithm="giac")

[Out]

1/2*((2*B*c^2 + 4*A*c*d - 4*B*c*d - 2*A*d^2 + 3*B*d^2)*(f*x + e)/a - 4*(A*c^2 - B*c^2 - 2*A*c*d + 2*B*c*d + A*
d^2 - B*d^2)/(a*(tan(1/2*f*x + 1/2*e) + 1)) + 2*(B*d^2*tan(1/2*f*x + 1/2*e)^3 - 4*B*c*d*tan(1/2*f*x + 1/2*e)^2
 - 2*A*d^2*tan(1/2*f*x + 1/2*e)^2 + 2*B*d^2*tan(1/2*f*x + 1/2*e)^2 - B*d^2*tan(1/2*f*x + 1/2*e) - 4*B*c*d - 2*
A*d^2 + 2*B*d^2)/((tan(1/2*f*x + 1/2*e)^2 + 1)^2*a))/f

Mupad [B] (verification not implemented)

Time = 16.96 (sec) , antiderivative size = 297, normalized size of antiderivative = 2.08 \[ \int \frac {(A+B \sin (e+f x)) (c+d \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {x\,\left (2\,B\,c^2-2\,A\,d^2+3\,B\,d^2+4\,A\,c\,d-4\,B\,c\,d\right )}{2\,a}-\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (2\,A\,d^2-3\,B\,d^2+4\,B\,c\,d\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (2\,A\,c^2+2\,A\,d^2-2\,B\,c^2-3\,B\,d^2-4\,A\,c\,d+4\,B\,c\,d\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (4\,A\,c^2+6\,A\,d^2-4\,B\,c^2-5\,B\,d^2-8\,A\,c\,d+12\,B\,c\,d\right )+2\,A\,c^2+4\,A\,d^2-2\,B\,c^2-4\,B\,d^2+\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (2\,A\,d^2-B\,d^2+4\,B\,c\,d\right )-4\,A\,c\,d+8\,B\,c\,d}{f\,\left (a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5+a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4+2\,a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3+2\,a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+a\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+a\right )} \]

[In]

int(((A + B*sin(e + f*x))*(c + d*sin(e + f*x))^2)/(a + a*sin(e + f*x)),x)

[Out]

(x*(2*B*c^2 - 2*A*d^2 + 3*B*d^2 + 4*A*c*d - 4*B*c*d))/(2*a) - (tan(e/2 + (f*x)/2)^3*(2*A*d^2 - 3*B*d^2 + 4*B*c
*d) + tan(e/2 + (f*x)/2)^4*(2*A*c^2 + 2*A*d^2 - 2*B*c^2 - 3*B*d^2 - 4*A*c*d + 4*B*c*d) + tan(e/2 + (f*x)/2)^2*
(4*A*c^2 + 6*A*d^2 - 4*B*c^2 - 5*B*d^2 - 8*A*c*d + 12*B*c*d) + 2*A*c^2 + 4*A*d^2 - 2*B*c^2 - 4*B*d^2 + tan(e/2
 + (f*x)/2)*(2*A*d^2 - B*d^2 + 4*B*c*d) - 4*A*c*d + 8*B*c*d)/(f*(a + a*tan(e/2 + (f*x)/2) + 2*a*tan(e/2 + (f*x
)/2)^2 + 2*a*tan(e/2 + (f*x)/2)^3 + a*tan(e/2 + (f*x)/2)^4 + a*tan(e/2 + (f*x)/2)^5))